Characterization of spores of Bacillus subtilis that lack most coat layers.

نویسندگان

  • Sonali Ghosh
  • Barbara Setlow
  • Paul G Wahome
  • Ann E Cowan
  • Marco Plomp
  • Alexander J Malkin
  • Peter Setlow
چکیده

Spores of Bacillus subtilis have a thick outer layer of relatively insoluble protein called the coat, which protects spores against a number of treatments and may also play roles in spore germination. However, elucidation of precise roles of the coat in spore properties has been hampered by the inability to prepare spores lacking all or most coat material. In this work, we show that spores of a strain with mutations in both the cotE and gerE genes, which encode proteins involved in coat assembly and expression of genes encoding coat proteins, respectively, lack most extractable coat protein as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as the great majority of the coat as seen by atomic force microscopy. However, the cotE gerE spores did retain a thin layer of insoluble coat material that was most easily seen by microscopy following digestion of these spores with lysozyme. These severely coat-deficient spores germinated relatively normally with nutrients and even better with dodecylamine but not with a 1:1 chelate of Ca(2+) and dipicolinic acid. These spores were also quite resistant to wet heat, to mechanical disruption, and to treatment with detergents at an elevated temperature and pH but were exquisitely sensitive to killing by sodium hypochlorite. These results provide new insight into the role of the coat layer in spore properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[Identification and characterization of the outermost layer of Bacillus subtilis spores].

The Gram-positive bacterium Bacillus subtilis forms spores when conditions are unsuitable for growth. The spores are encased in a multilayered shell that includes a cortex and a spore coat, and remain viable for long periods in the harsh environment. In the present article, recent progress in our understanding of the outer structure of B. subtilis spores is reviewed in the Japanese language. Al...

متن کامل

Proteomic characterization of spore coat protein mutants of Bacillus subtilis

Spore coat proteins play an important role in maintaining spore structure as well as the resistive capacity of the spores. Spore morphogenetic proteins are responsible for layering the proteinaceous layers during spore morphogenesis. Previous studies have analyzed the dependence of certain coat proteins on the well-known morphogenetic proteins such as SpoIVA, CotE, CotH etc. Yet many coat prote...

متن کامل

Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation.

Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing the gerE36 and/or cotE::cat mutation) were used to study the relative contributions o...

متن کامل

Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

Different water treatment processes (physical and chemical) exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II)/H2O2 and UV radiation (365 nm) to inactivate Bacillus subtilis...

متن کامل

Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein.

The start sites for transcription and translation of a Bacillus subtilis spore coat protein gene, cotT, were determined. The CotT protein was synthesized as a 10.1-kDa precursor which was processed to a coat polypeptide of 7.8 kDa. Insertional inactivation of the cotT gene resulted in spores with an altered appearance of the inner coat layers and slow germination in response to a germination so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 20  شماره 

صفحات  -

تاریخ انتشار 2008